Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.

Identifieur interne : 001332 ( Main/Exploration ); précédent : 001331; suivant : 001333

Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.

Auteurs : Stephen R. Keller [États-Unis] ; Vikram E. Chhatre [États-Unis] ; Matthew C. Fitzpatrick [États-Unis]

Source :

RBID : pubmed:29126208

Descripteurs français

English descriptors

Abstract

Local adaptation is pervasive in forest trees, which are characterized by large effective population sizes spanning broad climatic gradients. In addition to having relatively contiguous populations, many species also form isolated populations along the rear edge of their range. These rear-edge populations may contain unique adaptive diversity reflecting a history of selection in marginal environments. Thus, discovering genomic regions conferring local adaptation in rear edge populations is a key priority for landscape genomics to ensure conservation of genetic resources under climate change. Here, we report on adaptive gene-environment associations in single nucleotide polymorphisms (SNPs) from 27 genes in the Populus flowering time gene network, analyzed on a range-wide collection of >1000 balsam poplar trees, including dense sampling of the southern range edge. We use a combined approach of local adaptation scans to identify candidate SNPs, followed by modeling the compositional turnover of adaptive SNPs along multivariate climate gradients using gradient forests (GF). Flowering time candidate genes contained extensive evidence of climate adaptation, namely outlier population structure and gene-environment associations, along with allele frequency divergence between the core and edge of the range. GF showed strong allele frequency turnover along gradients of elevation and diurnal and temperature variability, as well as threshold responses to summer temperature and precipitation, with turnover especially strong in edge populations that occur at high elevation but southerly latitudes. We discuss these results in light of how climate may disrupt locally adaptive gene-environment relationships, and suggest that rear edge populations hold climate-adaptive variants that should be targeted for conservation.

DOI: 10.1093/jhered/esx098
PubMed: 29126208


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.</title>
<author>
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Vermont</region>
</placeName>
<wicri:cityArea>Department of Plant Biology, University of Vermont, Burlington</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chhatre, Vikram E" sort="Chhatre, Vikram E" uniqKey="Chhatre V" first="Vikram E" last="Chhatre">Vikram E. Chhatre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Vermont</region>
</placeName>
<wicri:cityArea>Department of Plant Biology, University of Vermont, Burlington</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Vikram E. Chhatre is now at the Wyoming INBRE Bioinformatics Core, Department of Molecular Biology, University of Wyoming, Laramie, WY.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wyoming</region>
</placeName>
<wicri:cityArea>Vikram E. Chhatre is now at the Wyoming INBRE Bioinformatics Core, Department of Molecular Biology, University of Wyoming, Laramie</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fitzpatrick, Matthew C" sort="Fitzpatrick, Matthew C" uniqKey="Fitzpatrick M" first="Matthew C" last="Fitzpatrick">Matthew C. Fitzpatrick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29126208</idno>
<idno type="pmid">29126208</idno>
<idno type="doi">10.1093/jhered/esx098</idno>
<idno type="wicri:Area/Main/Corpus">001089</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001089</idno>
<idno type="wicri:Area/Main/Curation">001089</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001089</idno>
<idno type="wicri:Area/Main/Exploration">001089</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.</title>
<author>
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Vermont</region>
</placeName>
<wicri:cityArea>Department of Plant Biology, University of Vermont, Burlington</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chhatre, Vikram E" sort="Chhatre, Vikram E" uniqKey="Chhatre V" first="Vikram E" last="Chhatre">Vikram E. Chhatre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Vermont</region>
</placeName>
<wicri:cityArea>Department of Plant Biology, University of Vermont, Burlington</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Vikram E. Chhatre is now at the Wyoming INBRE Bioinformatics Core, Department of Molecular Biology, University of Wyoming, Laramie, WY.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wyoming</region>
</placeName>
<wicri:cityArea>Vikram E. Chhatre is now at the Wyoming INBRE Bioinformatics Core, Department of Molecular Biology, University of Wyoming, Laramie</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fitzpatrick, Matthew C" sort="Fitzpatrick, Matthew C" uniqKey="Fitzpatrick M" first="Matthew C" last="Fitzpatrick">Matthew C. Fitzpatrick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of heredity</title>
<idno type="eISSN">1465-7333</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Canada (MeSH)</term>
<term>Climate (MeSH)</term>
<term>Flowers (physiology)</term>
<term>Gene Frequency (MeSH)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Trees (genetics)</term>
<term>Trees (physiology)</term>
<term>United States (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Canada (MeSH)</term>
<term>Climat (MeSH)</term>
<term>Fleurs (physiologie)</term>
<term>Fréquence d'allèle (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Génétique des populations (MeSH)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>États-Unis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Canada</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Fleurs</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Flowers</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Gene Frequency</term>
<term>Gene-Environment Interaction</term>
<term>Genetics, Population</term>
<term>Genotype</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Canada</term>
<term>Climat</term>
<term>Fréquence d'allèle</term>
<term>Génotype</term>
<term>Génétique des populations</term>
<term>Interaction entre gènes et environnement</term>
<term>Polymorphisme de nucléotide simple</term>
<term>États-Unis</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Canada</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Local adaptation is pervasive in forest trees, which are characterized by large effective population sizes spanning broad climatic gradients. In addition to having relatively contiguous populations, many species also form isolated populations along the rear edge of their range. These rear-edge populations may contain unique adaptive diversity reflecting a history of selection in marginal environments. Thus, discovering genomic regions conferring local adaptation in rear edge populations is a key priority for landscape genomics to ensure conservation of genetic resources under climate change. Here, we report on adaptive gene-environment associations in single nucleotide polymorphisms (SNPs) from 27 genes in the Populus flowering time gene network, analyzed on a range-wide collection of >1000 balsam poplar trees, including dense sampling of the southern range edge. We use a combined approach of local adaptation scans to identify candidate SNPs, followed by modeling the compositional turnover of adaptive SNPs along multivariate climate gradients using gradient forests (GF). Flowering time candidate genes contained extensive evidence of climate adaptation, namely outlier population structure and gene-environment associations, along with allele frequency divergence between the core and edge of the range. GF showed strong allele frequency turnover along gradients of elevation and diurnal and temperature variability, as well as threshold responses to summer temperature and precipitation, with turnover especially strong in edge populations that occur at high elevation but southerly latitudes. We discuss these results in light of how climate may disrupt locally adaptive gene-environment relationships, and suggest that rear edge populations hold climate-adaptive variants that should be targeted for conservation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29126208</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1465-7333</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>109</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of heredity</Title>
<ISOAbbreviation>J Hered</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.</ArticleTitle>
<Pagination>
<MedlinePgn>47-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jhered/esx098</ELocationID>
<Abstract>
<AbstractText>Local adaptation is pervasive in forest trees, which are characterized by large effective population sizes spanning broad climatic gradients. In addition to having relatively contiguous populations, many species also form isolated populations along the rear edge of their range. These rear-edge populations may contain unique adaptive diversity reflecting a history of selection in marginal environments. Thus, discovering genomic regions conferring local adaptation in rear edge populations is a key priority for landscape genomics to ensure conservation of genetic resources under climate change. Here, we report on adaptive gene-environment associations in single nucleotide polymorphisms (SNPs) from 27 genes in the Populus flowering time gene network, analyzed on a range-wide collection of >1000 balsam poplar trees, including dense sampling of the southern range edge. We use a combined approach of local adaptation scans to identify candidate SNPs, followed by modeling the compositional turnover of adaptive SNPs along multivariate climate gradients using gradient forests (GF). Flowering time candidate genes contained extensive evidence of climate adaptation, namely outlier population structure and gene-environment associations, along with allele frequency divergence between the core and edge of the range. GF showed strong allele frequency turnover along gradients of elevation and diurnal and temperature variability, as well as threshold responses to summer temperature and precipitation, with turnover especially strong in edge populations that occur at high elevation but southerly latitudes. We discuss these results in light of how climate may disrupt locally adaptive gene-environment relationships, and suggest that rear edge populations hold climate-adaptive variants that should be targeted for conservation.</AbstractText>
<CopyrightInformation>© The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Stephen R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chhatre</LastName>
<ForeName>Vikram E</ForeName>
<Initials>VE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Vermont, Burlington, VT.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Vikram E. Chhatre is now at the Wyoming INBRE Bioinformatics Core, Department of Molecular Biology, University of Wyoming, Laramie, WY.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fitzpatrick</LastName>
<ForeName>Matthew C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.gp78p</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Hered</MedlineTA>
<NlmUniqueID>0375373</NlmUniqueID>
<ISSNLinking>0022-1503</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002170" MajorTopicYN="N" Type="Geographic">Canada</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="N">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="Y">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">landscape genetics</Keyword>
<Keyword MajorTopicYN="Y">local adaptation</Keyword>
<Keyword MajorTopicYN="Y">plant circadian clock</Keyword>
<Keyword MajorTopicYN="Y">range limits</Keyword>
<Keyword MajorTopicYN="Y">rear edge</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29126208</ArticleId>
<ArticleId IdType="pii">4605251</ArticleId>
<ArticleId IdType="doi">10.1093/jhered/esx098</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>Vermont</li>
<li>Wyoming</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Keller, Stephen R" sort="Keller, Stephen R" uniqKey="Keller S" first="Stephen R" last="Keller">Stephen R. Keller</name>
</region>
<name sortKey="Chhatre, Vikram E" sort="Chhatre, Vikram E" uniqKey="Chhatre V" first="Vikram E" last="Chhatre">Vikram E. Chhatre</name>
<name sortKey="Chhatre, Vikram E" sort="Chhatre, Vikram E" uniqKey="Chhatre V" first="Vikram E" last="Chhatre">Vikram E. Chhatre</name>
<name sortKey="Fitzpatrick, Matthew C" sort="Fitzpatrick, Matthew C" uniqKey="Fitzpatrick M" first="Matthew C" last="Fitzpatrick">Matthew C. Fitzpatrick</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001332 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001332 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29126208
   |texte=   Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29126208" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020